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We reexamine the stability of an interface separating two nonmagnetized relativistic fluids in relative mo-
tion, showing that, in an appropriate reference frame, it is possible to find analytic solutions to the dispersion
relation. Moreover, we show that the critical value of the Mach number, introduced by compressibility, is
unchanged from the nonrelativistic case if we redefine the Mach number asM=fb / s1−b2d1/2gfbs/ s1
−bs

2d1/2g−1, whereb andbs are, respectively, the speed of the fluid and the speed of sound(in units of the speed
of light).
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I. INTRODUCTION

The stability of the interface between two fluids in rela-
tive motion is a classical problem of fluid dynamics dating to
the end of nineteenth century, and to the work of[1,2] for
incompressible fluids. In this limit, any relative tangential
motion between two uniform fluids is found to be unstable.
These classic studies were successively extended to include
important additional physical ingredients[3]. For example,
the inclusion of compressibility makes stable all modes
whose effective Mach number is larger than a critical value,
the effective Mach number being defined using the projec-
tion of the velocity on the wave number direction. The rela-
tivistic version of the instability has been studied extensively
in the astrophysical context, most prominently in[4,5,6],
where numerical solutions to the dispersion relation were
found. In this note we reexamine the Kelvin-Helmholtz in-
stability for relativistic flows, showing that, in the appropri-
ate reference frame, the dispersion relation has a form that
can be solved analytically. Moreover, we show that the criti-
cal Mach number, introduced by compressibility, is un-
changed from the nonrelativistic case if we use the relativis-
tic Mach number definition M=fb / s1−b2d1/2gfbs/ s1
−bs

2d1/2g−1, introduced in[7,8] in the context of steady solu-
tions.

In Sec. II we present the relevant equations and the dis-
persion relation, while in Sec. III we analyze its properties.
In Sec. IV we summarize our results.

II. EQUATIONS AND DISPERSION RELATION

We study the linear stability of a planar interface separat-
ing two fluids in relative motion. Without loss of generality,
we assume the interface to be located in thex−z plane, and
describe the system in a frame of reference in which the two
fluids move with equal and opposite velocities, that is,

u = Hs+ U,0,0d for y . 0,

s− U,0,0d for y , 0,
J s1d

whereU is positive. Furthermore, we assume that the two
fluids are initially in pressure equilibrium and that they have
the same proper densityr.

Our starting points are the equations of relativistic hydro-
dynamics for a relativistic perfect fluid in flat Minkowskian
geometry[9,10]
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whereu is the fluid velocity,c is the speed of light,r is the
proper rest mass density,h is the specific enthalpy, andg
denotes the Lorentz factor,

g =
1

Î1 − u2/c2
.

The system(2)–(4) is closed by an equation of state

h = hsp,rd, s5d

from which the speed of sound can be evaluated according to

cs ; cÎU1

h

] p

] r
U

s

, s6d

where the derivative has to be taken at constant entropy. In
what follows we do not make any particular assumption on
the choice of the equation of state(5); we do, however, recall
that for a relativistic(nondegenerate) perfect gas the sound
speed cannot be larger than the limiting valuec/Î3 [11–13].

The relativistic character of Eqs.(2)–(4) enters in two
distinct ways. The first effect is purely kinematical and be-
comes important when the relative bulk motion of the fluids
is close to the speed of lightc (i.e.,g@1). On the other hand,
we can have thermodynamically relativistic fluids where suf-
ficiently high temperatures lead to microscopic relativistic
velocities; in this case the specific enthalpyh can signifi-
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cantly exceed the rest mass energy of the fluidsh@c2d.
In order to obtain the dispersion relation we must first find

the perturbative solutions of the linearized version of the
relativistic equations(2)–(4). For this purpose, we start by
observing that these solutions may be easily found in the
reference frames in which the fluids are at rest: in these
frames, in fact, we have sound wave solutions. Denoting a
generic three-dimensional perturbation of the flow variables
by dq (hereq is one ofr, u, p) we have

dq̃± ~ expfisk̃±x̃ + l̃±ỹ + m̃±z̃− ṽ±t̃dg ,

where the tilde denotes quantities in the rest frames and the +
and − subscripts refer, respectively, to the fluid initially in the
regiony.0 (with positivex velocity) andy,0 (with nega-
tive x velocity). In the rest frames, the components of the

spatial wave vector(k̃±, l̃±, andm̃±) and the frequencyṽ± are
connected by the dispersion relation for sound waves

ṽ±
2 = sk̃±

2 + l̃±
2 + m̃±

2dcs
2. s7d

In the laboratory frame, where the fluids have the initial con-
figuration given by Eq.(1), the two solutions will still have
the form

dq± ~ expfiskx+ l±y + mz− vtdg,

this time with v, k, andm equal on both sides of the inter-
face. However, sincek, l±, m, and v are, respectively, the
spatial and temporal components of the wave four-vector

K±
m=sk, l± ,m,vd, we can find their relationship tok̃±, l̃±, m̃±,

and ṽ± by means of a Lorentz transformation. Using this
result, we can write the dispersion relation(7) in the labora-
tory frame as

g2sv 7 kUd2 = Fg2Sk 7 v
U

c2D2

+ l±
2 + m2Gcs

2. s8d

The pressure has to be continuous at the interface between
the two fluids, i.e.,dp+uy=0=dp−uy=0;dp; furthermore, the
fluid displacementsdj±st ,xd need to match at this interface.
Since the Langrangian derivative of the latter,ddj± /dt, is
equal to the transverse velocitydvy of the fluid element,
matching the displacements is equivalent to

dvy+

v − kU
=

dvy−

v + kU
, s9d

where the tangential velocitydvy can be expressed as

dvy± =
c2l±

sv 7 kUdrhg2dp, s10d

a result which follows upon properly linearizing the trans-
verse component of Eq.(3).

Let us now introduce the dimensionless phase velocity
f=v / sc3kd, the classical Mach numberM =U /cs, and b
=U /c, so that Eq.(8) can be solved in order to expressl± in
terms off, k, m, M, andb:

l± = gkÎsf 7 Md2 − S1 7
fb2

M
D2

−
m2

g2k2 . s11d

Notice thatl± will be, in general, complex numbers; there-
fore in order to satisfy appropriate boundary conditions at
infinity, Imsl+d must have positive sign fory.0, while
Imsl−d must be negative fory,0. Furthermore, perturbations
must be carried by outgoing waves asy→ ±`: this is known
as the Sommerfeld radiation condition and has to be applied
in the frame in which the fluid is at rest[3].

The dispersion relation can now be obtained by substitut-
ing Eq.(10) into Eq.(9), with l± given by Eq.(11); after a bit
of algebra we find the following equation forf:

Îsf + Md2 − s1 + fb2/Md2 − a2s1 − b2d
sf + Md2

=
Îsf − Md2 − s1 − fb2/Md2 − a2s1 − b2d

sf − Md2 , s12d

wherea=m/k.
Equation(12) represents the desired dispersion relation.

Following [7,8] we introduce the relativistic Mach number,
defined asM=gM /gs, with gs=s1−cs

2/c2d−1/2; the disper-
sion relation(12) can then be squared to obtain the fifth-
order polynomial

fFS f

M
D4

sM2 + 2b2d − 2S f

M
D2

sM2 + 1 +a2 − b2d

+ sM2 − 2 − 2a2dG = 0. s13d

Notice thata is related to the angleu between the fluid
velocity and the wave number projection in thex−z plane by

cosu =
1

Î1 + a2
,

which allows us to write the solutions to Eq.(13) as

f = 0, s14d

f2

M2 =
Me

2 + 1 −be
2 ± Î4Me

2s1 − be
2d + s1 + be

2d2

Me
2 + 2be

2 , s15d

where the effective relativistic Mach numberMe and effec-
tive fluid velocity (in units of c) be are defined as

Me = M cosu, be = b cosu.

III. DISCUSSION

The solutions of Eq.(13) form a two-parameter family,
which we will describe in terms of the effective Mach num-
berMe and the effectivebe. Sincecs/c=b /M, an equivalent
choice may be given by any combination of two parameters
amongM (or M), b andcs/c; when the Mach number(ei-
ther classic or relativistic) is used, the restrictioncs/c,1/Î3
corresponds to the requirement that only the regionM .Î3b
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(or, equivalently,M.Î2gb) be physically accessible.
Returning to the solutions(14) and(15), we thus find that

the first rootf=0, which corresponds to a neutrally stable
mode, is valid only forMeù1. This neutral solution be-
comes important when one considers the stability properties
of a smooth shear layer(rather than a vortex sheet), where it
has been shown(see [14] for the classical case) that this
mode is destabilized.

Of the remaining roots(15), only the one with the minus
sign is valid and gives an unstable mode in the range
Me,Î2 asf (and thereforev) becomes purely imaginary;
for Me.Î2 the solution is stable. In addition, since the
physically allowed region has to satisfyM.Î2gb, pertur-
bations withb. s1+cos2ud−1/2 are always linearly stable, re-
gardless of the value of the Mach number(and therefore of
the sound speed). The growth rate for this mode is shown in
Fig. 1 as a function ofMe and be. In the same figure the
three curves represent the boundaries of the physically al-
lowed regions for three different angles(i.e., the condition
M.Î2gb is satisfied only above these curves).

We note that with this definition of the Mach number the
stability conditions for the two modes in this reference frame
are the same ones found in the classical case. This can be
understood by recalling that[7,8] have shown that the rela-
tivistic steady equations for an ideal fluid can be transformed
into an equivalent Newtonian form by a suitable set of trans-
formations, one of which is the substitution of the relativistic
Mach number for the classical one. In our case, when we
consider the neutral mode or the unstable mode at cutoff, we
have f=0 and therefore we are dealing with steady solu-
tions. Thus all the relations that are valid for them in the
Newtonian case still hold in the relativistic case, provided we
make the suitable transformations and, in particular, the criti-
cal values of the Mach number remain the same when we

substitute the classical definition with the relativistic defini-
tion.

The previous results can be easily reformulated in terms
of the classical Mach numberM =U /cs, by simply recalling
that, according to its definition, we have

M = ÎM2s1 − b2d + b2. s16d

We remind the reader that both the classical and relativ-
istic Mach numbers as previously introduced refer to either
one layer or the other as seen in the laboratory frame. To find
the relative Mach numbers between the two layers, we have
to apply the correct relativistic velocity composition, that is,

Ũ± = ±
2U

1 + b2 , s17d

where, again, the tilde denotes quantities measured in their

rest frame. In other words,Ũ+ is the velocity of the upper
sy.0d layer as measured from the rest frame of the lower

sy,0d, and similarly forŨ−. Since thermodynamic quanti-
ties such ascs andgs are relativistically invariant by defini-
tion, the classical Mach number transforms in the same way

as U, while the relativistic Mach number becomesM̃
=2gM.

The stability conditions for the first and second modes
[given, respectively, by Eqs.(14) and(15)], as seen in these
rest frames, are obtained simply by using Eq.(17) together
with its inverse relation at cutoff. This yields

M̃ cosũ . 2Mcx̃, s18d

where

x̃ =
g̃ + 1

2
Î1 +

1 − g̃

1 + g̃
cos2 ũ, s19d

with Mc=1, Mc=Î2 for the two modes, respectively. In Eq.
(19) we have introduced the relative Lorentz factor between

the two layers,g̃=s1−b̃2d−1/2, and the angleũ=tan−1 m̃/ k̃.
The relativistic critical Mach number is now a monotoni-

cally increasing function of the relative velocityb̃ between
the two fluids, reaching its minimum value in the limit of

vanishingb̃, where Eq.(18) reduces to the well known clas-

sical stability conditions, i.e.,M̃ cosũ.2 for the neutrally

stable mode andM̃ cosũ.Î8 for the unstable mode. The
critical classical Mach number, however, decreases with

FIG. 1. Growth rate contours for the unstable mode discussed in
the text as a function of the relativistic effective Mach numberMe

and be. The allowed range forMe and be is restricted by the un-
physical region, where the sound speed exceeds the limiting value
c/Î3. The three curves represent the upper boundaries of such un-
physical regions for three different angles(u=0, solid line; u
=p /4, dashed line;u=9p /20, dash-dotted line). For Me.Î2 this
mode becomes stable.
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increasingb̃. The stability criteria for the two modes in terms
of M andM are summarized in Table I.

IV. SUMMARY

Our results can be briefly summarized as follows.
(1) We have derived the dispersion relation for the

Kelvin-Helmholtz instability for relativistic flows, showing
that it can be solved analytically.

(2) Using the definition of relativistic Mach number
given by [7,8] we have shown that in the laboratory frame
the stability criteria are the same as those found in the clas-
sical case.

(3) We find that, for a given perturbation whose wave
number makes an angleu with the flow direction, there exists
a critical velocity above which the fluid is always stable,
regardless of the value of the Mach number. In the laboratory
frame, this value is conveniently expressed in terms of the
Lorentz factor asg=Î1+1/cos2 u, while in the rest frame we

haveg̃=1+2/cos2 ũ.
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TABLE I. Stability conditions for the two modes described in the text in terms of the effective relativistic
and classical Mach numbersMe and Me;M cosu. For clarity of exposition we seth̃=h2+fs1−g̃d / s1
+ g̃dgcos2 ũj1/2, while M̃e=M̃ cosũ andM̃e=M̃ cosũ are the effective relativistic and classical Mach num-
bers in the rest frame. The Newtonian limit is recovered by lettingg, g̃→1, be→0, andx̃→1.

Mode Laboratory frame Rest frame

f=0 Me.1, Me.Î1/ g2 +be
2 M̃e.2x̃, M̃e.g+1/g

f=f− Me.Î2, Me.Î2/ g2 +be
2 M̃e.Î8x̃, M̃e. fsg̃+1d / g̃gh̃
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